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ABSTRACT 

This note extends briefly the integer transforms of CM. Racier (1972) 
to transforms over finite fields and rings. These transforms have 
direct application to digital filters and make possible digital filtering 

without round-off error. In some cases, the parameters of such 

number-theoretic transforms can be chosen so that substantial re- 
ductions in hardware are possible over what would be needed using 

classical digital filtering techniques. 
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SUMMARY 

This note reports briefly on material found for utilizing finite fields and rings 

to compute convolutions of finite sequences of integers. The methods described 
generalize the integer transform methods of Rader to similar transforms over 

finite fields and rings. 

Some fundamentals  of finite or Galois  fields GF(pn)  are informally introduced. 

Then,  following Pollard,    d-point Fourier-like transforms are defined and shown 
to be the only linear transforms in GF(p  ) with the circular  convolution property. 

3 
This   generalizes  to  Galois   fields  a  result  due to Agarwal and   Burrus    for  the 
convolution of integer sequences. 

Since the set G(p) of integers modulo a prime number p is always a subfield of 
GF(p ), d-point transforms over GF(p ) can be utilized to compute the transform 
of a sequence of integers {a., a , . . . a ,} where a lies in the range — [(p — l)/2] w$: 
a •$ (p — l)/2. As a consequence, the circular convolution of two such sequences 
can be computed using d-point transforms over GF(p  ). 

An interesting special  case occurs   if n = 2 and q  is a  Mersenne prime of form 
q =  2^—1,   where p is a  prime.    For this  case,   GF(q  )  is  shown to  mimic the 

2 complex numbers.    That is,   all  elements  of GF(q ) are of the form a + ib where 
2 a,   beGF(q),   and  i satisfy the equations x    +1 = 0. 

2 
The d-point transforms  of GF(q  ) are shown to be candidates for computing con- 
volutions of two sequences of complex integers.    Since  d,   the number of points in 
the transform,   must  divide  the  order  qz — 1 = ZP+^ZP-1 — 1)   of the multiplicity 

2 2 subgroup of GF(p ),   the number  of points   in   a   transform   over  GF(q  )  can be 
chosen to be a power of 2.   Thus one can utilize the fast Fourier transform (FFT) 
algorithm to compute convolutions of complex numbers without round-off error. 

2 
In the  last  section of this  note,   a theorem,    stated  by  Pollard     on   transforms 
over a  ring of integers modulo m,   is  examined.    This leads to the notion of the 
modular arithmetic transform.    The Chinese remainder theorem is used to map 
modular arithmetic transforms into the transforms of integers modulo  m. 



THE  USE  OF  FINITE  FIELDS AND RINGS  TO  COMPUTE CONVOLUTIONS 

I.       INTRODUCTION 

Recently C. M. Rader showed in Ref. 1 that the convolution of two finite sequences of integers 
(a, ) and (b, ) for k = 1, 2, . . ., d can be obtained as the inverse transform of the product of two 
transforms which were other than the usual discrete Fourier transform (DFT).    Rader defined 

transforms of the form 

d-1 

A,   =    Y.    a  2nk Mod b (1) k        '-'      n 
n=0 

where  b  was either a Mersenne number 

b = 2" — 1      ,       pa prime      , 

or b was the Fermat number 

2m 

b = 1 + 2 ,       m an integer 

The primary advantage of the above Rader transform over the discrete Fourier transform, 

d-1 
nk 

a  V n 
n=0 

F^ =    T    a  wnk       , (2) 

where w is a d     root of unity,   lies in the fact that the multiplications  by powers of w  are 
replaced in binary arithmetic by simple shifts.    Of course,   this  advantage must be weighed 
against the difficulties of computing the answer modulo b   and of the numeric constraints,   relat- 
ing word length,   length of sequence  d  and compositeness of d,   imposed by the above two choices 
for b,   suggested by Rader.    Our purpose here is to review the Rader transform first by enlarg- 
ing the class of transforms,   given by (1),   and second by presenting more details of the computa- 
tional algorithm for computing such a convolution with (1). 

In the next section,  the class of transforms given by (1) is increased to include a Fourier- 
type transform over an arbitrary finite field,   the Galois field.    Such a generalization has been 

2 3 discussed recently by J. M. Pollard    in 1971,   but also much earlier by Reed and Solomon    in 
1959 in a somewhat different context.    The approach used here will follow the more explicit 
approach of the earlier reference. 

II.     DFT  ON A  GALOIS  FIELD 

The only finite fields are the Galois fields.    The number of elements in a Galois field is p 
where   p  is a prime number and  n  is a positive integer.    To construct a Galois field GF(p  ), 
one must first find an n     degree polynomial p(x) over GF(p) which is irreducible.    The elements 
of GF(p ) are then all polynomials of the form 

n-1 

f(o>) =    £    fi«l      •        VGF(p)      ,        (i=0, 1, 2 n-1) 
i=0 



where a is a root of p(x), i.e., p(o) = 0. The product h(o ) of two elements say f(o ) and 

g(o) in GF(pn) is the residue of f(x) g(x) modulo p(x) with G substituted for x. That is, 

h(o )  is found by 

h(x) = f(x) g(x) Mod p(x) 

where x = a.    Similarly,   the sum s(a) is found by 

s(x) = f(x) + g(x) Mod p(x) 

where x = a. By taking the sums and products of all polynomials f(a) in this manner, the addi- 

tion and multiplication tables of the elements of GF(p ) can be found. Let this be illustrated by 

the following example. 

Example 1 

Consider the integers modulo 3.    This is the prime field or GF(3) = { 0, 1, 2} where 2 = — 1. 

Let 
2 

p(x) = x    + x + 2 

Since p(0) = 2,   p(l) = 1,   and p(2) = 2,   p(x) is irreducible over the coefficient field GF(3).    A root 

to p(x) = 0 can only be found in some field containing GF(3),   some extension field.    If a   is such 

a root,   then a  satisfies 

p(o) a    + a 

2 2 
Starting with the element  a,   one computes a    by computing x    Mod p(x) as follows: 

x    + x + 2   I x 

x2 + x + 2 
-x - 2 

2 
This —x — 2=2x+lis the residue of x   + x + 2,   and 

2 
a 2a + 1 

2 3 is the reduced expression for a  .    Similarly,   one can compute a    by computing the residue of 

(x) (x2) = (x) (2x + 1) = 2x2 + x,   i.e., 

2 2 
x    + x + 2   I 2x    +x 

2x    + 2x + 1 
2x + 2 

Thus 

a    - Za + 2 

Continuing in this manner one gets the results shown in Table 1. 

TABLE 1 

THE  NON-ZERO  ELEMENTS  OF GF(32) 

a 
2                 3             4          5             6 

a                a            a        a           a 7 
a 

8 
a 

a Za + 1       Za + 2        2        2a       a + 2 a + 1 1 



In this particular case, a  and its powers a   (for i =ml, 2, .... 8) generate the eight non-zero 

elements of GF(3  ).    If an element  a  and its powers generate the non-zero elements of a field, 

a   is called a primitive element.    If  o   is a primitive element,   and a root of p(x),   which it is in 

this example,  then the relation p(a) = 0 can be used to compute the non-zero elements of GF(p ). 
2 

This is done for this example as follows:   p(») = 0 is the relation a    + a + 2 = 0.    Solving for 

a  ,   yields 

a    = 2a + 1 

Then 

3 2 2 
a    - a(a ) = a(2a + 1) = 2a    + a 

= 2(2o + 1) + a = 2a + 2 

and so forth,  thereby obtaining Table 1. 

The above example illustrates the following facts about a Galois field.    All the elements of 

GF(p  ) satisfy the equation 

n 
xP    = x      . (3) 

There exists a primitive element aeGF(p ) which generates the non-zero elements of GF(p ). 

The non-zero elements GF(p ) compose a cyclic group. 

In general,   there always exists an aeGF(p  ) such that GF(p ) is the set {o, a, a  , . . . 
n   . n p   -1 

a ' }.    a is called (p    — l)-th root of unity. 
I 

If in (1),  b  is a prime  p,  then the Rader transform    can be regarded as a mapping of a 

subset of GF(p) into GF(p).    To see this,   consider the mapping 

d-1 

A(x) =     N     a, x    Mod p      . (4) 

k=0 

Then the elements of the subset 

{l, 2, 22, .. .2d-1}  Mod p 

of GF(p) have,   successively,   the images 

(A(l), A(2), A(22) A(2d_1)}  Mod p      , 

also a subset of GF(p) where a, eGF(p).    Hence,   A(x) as given by (4) is a mapping of a subset of 

GF(p) into GF(p).    A(x) is called a polynomial mapping. 

More generally, let a    and x  be elements of an arbitrary Galois field, say GF(p  ), and con- 

sider the mapping of subset of d  distinct non-zero elements 

Od={r0,ri,...rd_i} VGF(pn) 

into GF(p  ) with the polynomial mapping 

d-1 

A(x) =    Y,    akxk      • ' (5) 

k=0 



This is the most general possible mapping of GF(p ) into GF(p ) (see Ref. 3).    This mapping 

can be displayed as a system of linear equations in the coefficients a    as follows. 

»,     v 2 d-1 
A(T.) = a    + a.T.  + a1r,   + . . . a ,   , T, 1'        o        11        2   1 d-1   1 

A(T, a    + a, T..  + a,T,   + . o        12        2   2 a,   . T0 d-1   2 
d-1 

2 d-1 
A(T ,) = a    + a.T, + a.T,  + ...a,   .T. d'        o        Id        2d d-1   d (6) 

This system can be written further in matrix form as 

A = Ta 

where a and  A are the column matrices 

-7) 

d-1 

'A(T4)" 

A(T2) 

and A = 

.^d*. 

and 

T = 

1     T4.T   . 

1     T2'T2' 

d-1 

d-1 

2 d-1 
1        T ,,  T,,...T, d    d d 

is a d X d matrix of elements in GF(p ). 

By (7) the polynomial mapping (5) can also be regarded as a linear mapping of the vector a 

onto vector a vector A.    Such a mapping is one to one or is invertible if  matrix T has an inverse, 

that is,   if the determinant |T|  of T is non-zero.    Since the determinant of T  is a Vandermonde 

determinant,   it can be evaluated as 

ITI = n (Ti-T.)^o 
j<i 

1 

since the T.'S are all distinct.    Thus T~    exists and (7) can be solved as 

a = T    A 

the inverse "transform.'1 



Next let us impose on (7) the constraint that it can be used to compute circular convolution 

s     of sequences a    and b  , n ^ n n 

d-1 

S   =    T.    a, b.     . . 
n       —'      k  (n-k) 

k=0 

C*) 

where (n - k) is the residue of (n - k) modulo d.    One wants the transform of S  ,   namely,   S to 

be given by 

S(T, 

S(T2) 

S(Td) 

A(Tl)     •      B(Tl) 

A(T2)     •      B(T2) 

A(rd)     .      B(rd) 

A  ® B 

Kquating components 

S(T, ) = A(T, ) B(T, )       for k =  1, 2, . . . d 

d-1 d-1   d-1 

E    Vk =    I      I    alb 

n=0 1 = 0 m=0 

T, m  k 
l+m 

l+m 

Substituting (9) in the left side, 

d-1   d-1 d-1   d-1 

Z/ab,       v T,    =    )        /      a„b t-i      p   (n-p)    k Lt       U       i    r 
n=0   p=0 1=0   m = 0 

Next if one substitutes  I   for p and m  for residue of (n-p) Mod d in the left side,   then 

d-1 d-1 d-1   d-1 
V       V i (m+f) v       V i /        /      a„bT, =)        /.     a. b    T, LJ       U       fmk Li       u       fmk 

1 = 0 m=0 1 = 0  m=0 

^+m 

Finally,   equating coefficients of a   b    ,   one gets 

(m+f) l+m (10) 

for (k, (, m = 0, 1, 2. . . d - 1) where (m + I)  is the residue of (m + I) modulo d. 

In order to satisfy (10), suppose m + I   is an integer   r  in the interval d •$ r < 2d,   then 

m + f   =r=d + (r) 

where (r)  is the residue.    In this notation (10) becomes 

_(r)        d+(r) _     d       (r) 
T. =   T, =   T, T. 

k k k        k (11) 



(r)  -1 n (r) 
Since  by assumption T.   ^ 0,   the inverse element [T,      ]       in GF(p  ) of T,       exists.     Multiplying 

both sides of (11) by this inverse yields 

r,d =  1       for k =  1, 2 d      . (12) 
K 

That is,   for transform (7) to yield circular convolutions,   T,   must be a d      root of unity for 

k = 1, 2, . . . d in GF(pn).    This is essentially the same result Agarwal and Burrus got in Ref. 4 

for the circular convolution of integer sequences. 

Since the non-zero elements of GF(p  ) form a cyclic group of order p    - 1,   the truth of (12) 

for an element T. «GF(pn) implies integer  d  divides p   - 1.    That is, d|p   - 1 if transform (7) is 

to yield a circular convolution.   Moreover, since the set of elements (T, T-,. . . T ,) are distinct and 

are all d     roots of unity,  this set must be a cyclic subgroup of the cyclic subgroup of the non- 
2 H -1 

zero elements of GF(p ).    Thus the set,   (T,, T?, . . . T ,),   equals the subgroup {a, a  .... a       ,1) = 

<P& i.e., 

{rv r2.. .Td) = {a, a ,... a " , l} =  <pd (13) 

in some order where aeGF(p ) is a generator of the subgroup. 
2 d-1 If the group cp, = (a,a,...a       , 1) is substituted for (T ., T2- . . T ,) in transform (7),   the 

transform becomes 

d-1 

A.   =    Y,    a  akn      for (k = 0, 1, 2, d-1)      . (14) 
k       •-'      n 

n=0 

To invert (14), observe first that all elements of <p , satisfy the equation 

xd - 1 = 0       . 

But since x    — 1 factors as 

d-1 

x— l = (x — 1)    2J    
X 

n=0 

one has 

d-1 

£    xk = 0      for x ^ 1      and      xe<p    (Z GF(pn) 

k=0 

d-1 

^   xk =   1 + 1 +. . . +1   = (d)       for x = 1 (15) 

k=0 d times 

where (d) denotes the residue of d modulo p.    This formula is given by Pollard [Ref. 2,   Eq. (8)] 

and earlier by Reed and Solomon [Ref. 3,   Eq. (3)]. 

From (15) we now derive the discrete "delta" function needed to invert (14).    Consider the 

sum of x   over all the elements of the multiplicative subgroup <p,,   defined by (13).    This is 

d-1 d-1 

I      xn=    I    (/3k)n=    Y    (/3n)k       . 
xe<p , k=0 k=0 



But this is in the form of (15) and /3    is an element of <p      thus 

d-1 

YJ     xn =    V    (/3n)k = 0       forn^OModd 

xei?, k=0 

= (d)      for n s 0 Mod d 

= (d) 6d(n) (16) 

where 6,(n) is the delta function 

6,(n) = 0      for n ^ 0 Mod d 

= 1      for n = 0 Mod d 

Since (d) is an element of field GF(p  ),   the inverse (d)      exists in GF(p  ).    Now,   multiply 

AR by (d)"1 Q"km and sum on k for (k = 0, 1, 2, . . . d - 1).    This yields by (14) and (16), 

d-1 d-1   d-1 
-1    V    A  „ -km _ MI"

1
   V     V   o  „,kn„ ,-km /j\-l    V     »      -Km      ,,,-1    v       V Kn (d) I    Ako = (d)        11    ana     o 

k=0 k=0   n=0 

d-1 /d-1 \ d-1 

-^    I     4   I    *«»-»>). (df1 (d)    l    an6d,n 
n=0       \k=0 / n=0 

a 
m 

Thus, 

and 

d-1 
A V kl1 
A,   =     >     a   a 

k      u     n 
n=0 

d-1 

in=(d)_1    X    \a'kn <17> 
k=0 

where a    and A,   are elements of GF(p  ) and  a   is a generator of d  element subgroup 6 ,,   the 

multiplicative subgroup of GF(p ). 

To show the circular convolution property of (17), let 

d-1 d-1 

A^ =    V    a  akn      ,       B    =     V     b  akm    - 
k       t-i      n k        u       n 

n=0 m=0 

and 

Ck = Ak * Bk 



(d) 

rerse transform of C. k for (k = 0, 1, .... d - 1) is 

d-1 d-1 d-1   d-1 

>     C, or        - (d) 
^-/        k 

y y       v     n  u       k(m + n-p) /        /      a  b    a 
—'       '-'       n  m 

k=0 k=0 n=0   m = 0 

d-1 d-1                  d-1 

Md)"1 y V     a  b        V    ak(m+n-p) 
—'       n  m    u 

n=0 m=0                k=0 

d-1 d-1 d-1 

=    V y ab    6,(n + n — p) =    )      ab,       , n m  d                  r         U       n  (p-n) 
n=0 m=0 n=0 

(18) 

where (p - n) denotes the residue of (p — n) modulo d. 
The result,   given by (18),   shows finally that the imposition of condition (12) on the trans- 

form,   given by (7),   is both necessary and sufficient for transform (7) to yield circular convolu- 
tions.    This generalizes a similar result,   given by Agarwal and Burrus in Ref. 4,   for the field 
of complex numbers to all fields both finite and infinite.    In the next section,   we show how to 
restrict the finite field transform,   given by (17),   so that it yields circular convolutions over 

both the integers and complex integers. 

III.    INTEGER ARITHMETIC   PRESERVING  FINITE  FIELD TRANSFORMS 

Suppose  a   is an integer of magnitude less than or equal (p — l)/2 where  p  is a prime.    Then 
integer  a  satisfies 

-[(p - \)/2}4  a •£  (p- l)/2      . 

If a > 0,   a   is the residue modulo p.    If a = —b where b > 0,  then 

a = p — b Mod p 

Thus the set of positive integers 

{-Ef! -2,-1, 0,1, 2,... Pf*} 

corresponds in a one-to-one manner with the following set of residues modulo p, 

{(p - Efijt.... p - 2, p- 1.0.1. 2.... Ef*}      . 

Since the latter set exhausts all residues modulo p,  this set uniquely represents the set of all 
positive and negative real integers of magnitude less than or equal to (p - l)/2,   namely,   the set 
{x| |x|<C (p - l)/2},   x a positive or negative integer.    However,   the set of residues modulo p 
composes precisely the Galois or finite field GF(p),   hence the above correspondence maps the 
set of integers less than or equal to (p — l)/2 onto GF(p) in a one-to-one manner. 

In order to carry out arithmetic operations in GF(p) which arrive at the correct arithmetic 
answer,   one must often restrict the operating ranges of the integer variables even further.   For 
example,  to compute the circular convolution (18) in GF(p) where a    and b    are integers,   one 
requires the final convolution to lie in the same "dynamic range" as the integers a    and b . 
That is,   in order to avoid ambiguity 



(1-1 

<   £    a._b.       . .£ 
n=0 

n (p-n) 
p-1 
~^2T 

or its equivalent 

d-1 

y 
n=0 

a b,       , 
n (p-n) (19) 

Since 

d-1 d-1 

T    a   b,        . —'      n (p-n) <    I 
n=0 n=0 

(P-n)1 

where equality holds,   if a    and b    are positive integers,  to satisfy (19) for all sequences a    and 

b    such that  la   \ 4 A- and  lb   I < B,   it is necessary that 
n '   n1 '   n1 J 

d-1 

£    (Max |aj) [Max  |b |]= dAB<^ 

n=0 

A and  B  are the dynamic or operating ranges of integers,   |a 

then by (20) the largest value of A  is given by 

A _ 17   2d 

(20) 

and  |b   |,   respectively.    If A = B, 
n 

(21) 

where [x] denotes greatest integer less than x,   what is often called the principle part of x. 

Assuming (21),   which for many practical applications is somewhat pessimistic,   one would need 

to constrain a    and b    to the interval. 
n n 

•*'AJ&\<**\*\M = A 

in order to compute the circular convolution 

d-1 

C    =     T,    a  b,        . p        Li      n  (p-n) 
n=0 

unambiguously with modulo p arithmetic,   i.e.,   keep c    in the interval 

P -1 «, . P -1 

(22) 

(23) 

To compute convolution (23) when a    and b    are integers in a Galois field with transforms 

of the type suggested by Rader [Eq. (1)],   one must first represent the integers in such a field. 

To preserve the arithmetic operations of addition and multiplication,   the representation must 

necessarily be restricted to GF(p) in the manner shown above.    However,   GF(p) is a subfield 

of GF(p  );   in fact,   the ground field of GF(p  ) for all n  (n = 1, 2, 3, ... ).    Thus,   convolution (23) 

can be performed with transforms of type (17) on a Galois field GF(p  ) if a    and b    are restricted 

to GF (p).    In others words,  if   a , b  eGF(p) for (n = 0, 1, 2, ... d — 1) and the transforms are r * n    n 

d-1 

—'       n 
n=0 

kn 
and      B, 

d-1 

I 
n=0 

a  a 
n 

kn 
for (k = 0, 1, 1) 



where   a   is a generator of a d-element subgroup <p , of [GF(p  ) — 0],   then the d-point convolution 

d-1 

C    =    V    a  b,       . p        t->      n  (p-n) 
n=0 

if integers a    and b    is found by forming 
" n n B 

C,   = A,   • B.        for (k = 0, 1, .. .d - 1) k k        k 

and then taking the inverse transform 

d-1 

Cn= (d) I    Cka 
k=0 

If an a   can be found so that multiplications by powers of a   are simple in hardware,   the above 

extension might be useful in increasing the number of possible points in the convolution.    This 

follows from the fact that  d  is a divisor of p    — 1 and the number of divisors of p    — 1 is always 

greater than the number of divisors of p — 1. 

In applications to radar and communications systems,   one generally wants to take convolu- 

tions of complex numbers.    Towards this end set a    = a    + i@    and b    = x    + iy    where a , B  ,  x , r n        n n n       n      Ja n     n      n 
and y   are integers,   suitably restricted in GF(P) so that the real and imaginary parts of 

d-1 

C    =    V    a  b,       . = y    + iS (24) p       LJ      n (p-n)       n n 
n=0 

lie in the interval -[(p - l)/2] 4 y ,   6   < (p - l)/2 for (n = 0, 1, . . . , d - 1) 

ab    = a   x    -/3y    +i(ay    +/3X) n n        n  n        nJn nJn     ^n   n 

Thus one needs four transforms,   A, ,   B. ,   X. ,   and Y,   of a   ,   /3  ,   x ,   and y  ,   respectively,   as   k       k       k k n      n      n Jn r J 

well as four inverse transforms of the products, 

AkXk'BkYk'AkYk'BkXk (25) 

to find (24), the circular convolution of complex integers. It is of interest to note that, for 

certain prime numbers q, this computational requirement can be reduced from four to two 

Rader-type transforms. 

To achieve this,   prime   q  must be such that 

X2 = -1 Mod q (26) 

is not solvable.    But the non-solvability of (26) is the same as the statement,   (-1) is a quadratic 

nonresidue (Ref. 5, p. 82).    This is further equivalent to 

i) = (-i)^-1'/2 
(-^) = (-D' 

where (a/q) is the Legendre symbol,   defined by 

— =   +1      if a  is quadratic residue Mod q 

= —1      if a is quadratic nonresidue Mod q. 

10 



There are two important special cases. 

Case I. 

Mersenne primes of form M   = 2" — 1 where  p is prime.    For this case 

/_1\ (M   -l)/2 (2P_2)/2 

(2P_1   1) 
= {-\y        *' = -l    . 

Thus ( —1) is a quadratic nonresidue and (26) is not solvable,   modulo M  . 

Case II. 
~m 

Format primes of form F     =2        +1 for 1 < m < 4.    For this case 
m 

(Fm-D/2 22m_1 

(-1)     m = (-1) = +1 

Thus ( — 1) is a quadratic residue modulo F     and (26) is solvable. 

If (26) is not solvable,   which is true when q  is a Mersenne prime M   = 1    — 1,  then 

polynomial 

P(x) = x2 + 1 

is irreducible in GF(q).    By the procedure of the last section (see Example 1) a root,   say i,   of 

P(x) = x2 + 1 = 0 (27) 

2 2 
can be found in the extension field GF(q  ).    GF(q  ) is composed of the set 

GF(q2) = {a + ib| a, beGF(q)} (28) 

where   i   is a root of (27),   satisfying 

i2 = 1 (29) 

where —1 = (q — 1)  Mod q. 

Evidently X plays a similar role over the finite field GF(q) that \l — 1 = i plays over the field 
«• - 2 

of rational numbers.   For example, suppose a + ib and c + id are elements of GF(q  ),   then by (29) 

(a + lb) ±(c + id) = (a ± c) + i  (b±d) 

and 

- 2 
(a + ib) (c + id) = ac + i   bd + ibc + iad 

= ac — bd + i(bc + ad) 

the exact analogues of what one might expect if a + ib and c + id were complex numbers.    Thus 

if —1 is a quadratic nonresidue mod q,  then the circular convolution (24) of the complex integers, 

a    and b  ,   can be computed,   using only two inverse transforms on the terms 

A, X.   - B. Y. , A, Y.   + B. X. kk kkkk kk 

defined in (25). 
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In the next section we will show how the transforms,   developed by Rader for prime fields 

and extended here to Galois fields,   can be extended further to rings,   formed from these fields. 

Before   doing this,   however,   it  is of some   independent  interest to demonstrate one property 
2 

of the   Galois  field  GF(q   )   which  the  field of complex rational  numbers  does not have.     If 

x = a + ibeGF(q   ),   x =?= 0,   then 

2 2 
Q  -1      /     , *u\q  -1 xM        = (a + lbp        = 1 

A true complex number does not have this property. 

To prove this, use the binomial theorem 

q2-l 2   .       M     x ,   2   ,, ,      2 

E 
k=0 

<a + ib)V=     I   (Vjtfb)".*  "^ 

But 

so that 

2 
q   -1       ,   q-l.q + 1 , q-1 «,   , 

iM = (aM     )M and      aM      =1 Mod q 

q2-l aq =1 Mod q 

Also the binomial coefficient is 

(qZ  - 1)  (q2 -2)...(q2 - k) ('V') 1-2-3., 

_  [q(q - 1) + (q -1)]   [q(q - 1) + (q -2)]... [q(q - 1) + (q - k)] 
=  1 •  2 •  3. . . k " 

(q - 1)  (q - 2)... (q - k)   _   (-1)  (-2). .    (-k) 
1 • 2 •  3. . . k 1 •  2. .. k 

=   (-l)k Mod q 

Thus 

(a + ib) q
2-l  = 

q2-l 

k=l 

(-l)k (ib/a) 

1 -(- 
2 

-ib/a)q 

However, 

1 + ib/a 

2 2 
-q        ->q   -1*        -q-l.q+1 o 
1=1 l=(l^     ) l 

(q-l)/2   q+1 -        -1   q + 1 - 
•l)lq   1,/Z] i= (-J:) i 
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where   (—)  is   the   Legendre symbol.     But by assumption   (—1)  is a quadratic  nonresidue and 
— 1 q 

(—)   = —1.    Hence, 

2 
?q    = i 

so that finally 

2 
a + ib)q   -1 =   1 + * (b/a)q    =   1 + ib/a  =   i 

i 4 ib/a 1  + ib/a 

We see above that the Mersenne primes M    have an advantage over the Fermat primes F 
p r m 

in the computation of convolutions of complex integers. However, as Rader points out in Ref. 1, 

this advantage must be weighed against the fact that the fast Fourier transform (FFT) algorithm 

can be applied to the transforms,   using Fermat primes,   but not to the Mersenne primes. 

IV.    TRANSFORMS IN   MODULAR  ARITHMETIC  AND  MODULO  m  RINGS 

A transform in the ring of integers modulo m was considered by Pollard in Ref. 2.    It is 
5 

well known   that the set of integers modulo m  is a ring R     with respect to addition and multi- 

plication modulo m. 

Pollard considered first rings where  m was a power of a prime  p,   namely,   m = p ,   p > 0. 

He let R*   denote the set of elements of R     prime to m,   i.e., m m f * 

R*   = {aeR    I (a, m) = l} 
m m1 

where (a, m) denotes the greatest common divisor of integers  a  and m. 

By Euler's theorem (Ref. 5,   p. 48),   if (a, m) = 1 

a^
(ln) = l Mod m (30) 

where <p(m) denotes the number of divisors of  m less than or equal to m,   Euler's function. 

;he multiplicative identity of R    ,   then 

P(m) = 1 (31) 

Thus,   since 1 is the multiplicative identity of R    ,   then 

for all aeR* . 
m 

The order of an element a  in R     (called the exponent of a  in number theory) is the least 
m   

power e(a) such that 

ae(a) = 1      . 

Also,   if m = p    the number of elements in R     prime to  m  is r m 

<p(m) = p    - p = p       (p-1) 

n — 1 i   n -1 
Thus by (31) the order of each element aeR*   divides cp(m) = p       (p — 1),   i.e.,  e(a)|p       (p — 1) 

all aeR* . 
m n-1 It is well known (Ref. 5, p. 107) that an element geR*   can be found such that e(g) = p       (p-1) 

g is called a primitive root since 

g<"(m) = 1 Mod m 
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and tp(m) = e(g) the order or exponent with   g belongs to modulo m.    The powers of  g,   that is 

the set 

r- I 2 pn_1(p-l) 1 G =   |g, g g>        u      'I 

are all distinct.    Suppose otherwise that 

where 

then 

gk = g'        .        k > t 

k     I   „ 
g  • g  eG       , 

pn_1(p-l)-f k-f 
r K =   g =   1 

n-1 
But k - f <   p       (p - 1) = e(g) which is contrary to the assumption that  g  is a primitive root. 

Hence the elements of  G  are distinct.    Since the elements of  G  are prime to m = p    and since 

G  has the same number of elements as R* , 
m 

G = R* m 

n-1 
Thus R*    is a cyclic multiplication group of p       (p — 1) elements with generator  g. 

Pollard next chooses a divisor  d  of p - 1 and considers an element reR*   of order d,   i.e., 
d m ... 

d   is the smallest integer for which r    = 1.    The powers of r  compose a subgroup G , of R    , 
'd "' "m« 

Gd= {l,r,r2, ...rd-'} 

He next shows that the equivalent of (16) holds when <p , is replaced by G,.     That is,   if dp — 1, 

d-1 

YJ      Xm =    YJ    (i-m)    = 0 for m # 0 Mod d 

XeGJ k=0 
d 

= (d)       for m s 0 Mod d 

= (d) 6d(m) (32) 

where 6 ,(m) is the delta function 

<5d(m) = 0       for m ^ 0 Mod d 

= 1       for m = Mod d 

and where (d) is d modulo pn. 

To prove this, consider first the following cyclic subgroup of R* 

gP"\   (gp-1)2....(gP"1)pn'1|   =  G (33) 
P 

of pn~    elements.    By Fermat's theorem [Eq. (31) for m  a prime],   an element g^ of G     _, 

satisfies 

(gP-1)k  =  lk  =  Mod p 
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However,   if we consider an arbitrary element of subgroup, 

_n-l    / „n-l\2 /    n-l»p-l 

P-l 

n-l   /    n-i\£ /    n-ixp 

'*   •«"   )-'(gP   ) 

modulo p,   then 

(34) 

n-l. 
TP       k 

n-l 

...((g)p)p...)TsK---(g (gv PI k        k . „   , H     = g     Mod p (35) 

,n-l n-l, Since integers p — 1 and p        are relatively prime,  i.e.,   (p - l,p"   ') = 1,  the subgroups G       , 
Pn" 

and G     , in (33) and (34),   respectively,   have only the unit element,   1,   in common,    Also by (33) 

and (34) every element of R*   is to be found in the product of G        ,  and G      ..    Hence R*    is J m r n-l p-l m 
P 

the direct product of these two subgroups,   i.e.. 

R*   = G     , x G       , m p-l n-l 
P 

Thus the only elements of R*   which are not congruent to 1 modulo  p  are the complement of 

G        .  and hence in G     .. n-l p-l 
P F 

Let h be a primitive root modulo p,  i.e.,  h is an integer 1 < h < p — 1 such that p — 1 is 

the least integer for which 

hp_1 s 1 Mod p 

Then it can be shown (see Ref. 5,   p. 107) that a primitive root  g  modulo p    can always be found 

of form 

g = h + up 

where   M- is an integer.    From this 

g   = (h + up)    = h    Mod p 

where 1 < h< p - 1.    With (35) this yields 

n-l, 
f       k = hk Mod p (36) 

Since h   is a primitive root modulo p,   it generates the p-l element group cp     .of the non-zero 

elements of IL = GF(p).    (36) maps the elements of G     ,  onto ip     , in one-to-one manner.    Since 
T P H P-l P-l 

D       (k+f )        k+f gy = h        Mod p,  this mapping is in fact an isomorphism between groups G     . and <p     ., 

i.e.,   G     . ~ <p     ,. p-l        p-l 
By (36) if some element of G     .  was congruent to 1 modulo p,   then 

n-l, , 
gp       k = h    = 1  Mod p      . 

Since  h  is primitive this is possible if and only if k  is a multiple of p — 1.    Thus none of the 

elements of G     ,  is congruent to 1 modulo p,   except the unit element 1.    Since d| p — 1,   G , is a 

cyclic subgroup of G     .,   and likewise no element x, x ^ 1,   of G , is congruent to 1 modulo p. 

Now for m ^ 0 Mod d 

d-1 

k=0 

m,k \ ,  m 
r 1) = (rd)m- 1 = (l)m - 1 E 0 Mod pn (37) 
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where   r  is a generator of G ,.    From the above, if m ^ 0 Mod d, 

rm ^ 1 Mod p 

Thus,   the integer r     - 1 and   p  are relatively prime (r     — 1, p) = 1.    But this in turn implies 

(rm - 1, pn) =  1 for (m = 1, 2, . . . , d - 1).    Thus 

d-1 

£    (rm)k = 0 Mod p" 

k=0 

for all m 7^ 0 Mod d and (32) is proved.    This is essentially the result proved by Pollard in 
nl nt Ref. 2.    Pollard states that more generally one can find a d-point transform for m = p     . . . p 

if d I (p. — 1) for all  i   (i = 1, . . . , t) and  d  is the order Mod m. 

Bonneau in Ref. 6 has proved a converse of Pollard's result which we restate and prove here 

in our terminology. 

Theorem. 

nl nt 
If R     has a d-point transform and m = p     . . . p,    ,   m   odd,   then d | p. — 1 for all  i  and there 

exists an element reR     such that  r is of order  d  in R    n. for all  1. m p.   1 
1 

Proof. 

Since Rm has a d-point transform, the delta function, given by (32), must exist where here 
nl nt -1 m = p,    ... p.    .     For  the inverse  transform  to exist the inverse (d)      of  (d),  the residue of d 

Mod m must exist.    To find this inverse it is necessary the (d, m) = 1;  d and m  are relatively 

prime.    But this implies (d, p-) = 1 for each i (i = 1, 2, . . . t). 

Consider the mapping  4  of ring R      on to the direct product of rings,   R„ n;, R„ n-,, . . . R„ n+, ff     &   t b      m r to p     ,»      p      /• p     x> 

i.e., 

t 

4> : R     -*   TT    R    n. m "       p.  1 
1 = 1        l 

which explicitly is 

4 (x) = (x Mod p1   , x Mod p2   , . . . x Mod pt   ) (38) 

where xeR    .     By the  Chinese remainder  theorem   (Ref. 7,  pp. 94-95),   ip{x)  is a one-to-one 

mapping.    Since ip{x + y) = i/(x) + if (y) and ^(xy) = i/.(x) • i/(y),   4 (x) maps ring R     onto ring irR   n. 
' i 

isomorphically. 

The set R*   of elements relatively prime to  m  is an Abelian group.    4 (x) maps group R* 

onto the direct product of cyclic groups R* n.,  isomorphically.    That is, 
i 

t 

R*   =*  n   R* n.      . (39) m       J-t      p.   1 
i=l        x 

The order of R*   in the isomorphism (39) is the number of elements relatively prime to  m, 

namely the number, 

16 



<p(m) =   JJ    (Pi-1) pt 

i=l 

i-1 

whereas the number of elements in the cyclic group R* n. is 

11. i 

v(pi   ) = (Pj - 1) Pt 
'i-1 

In order to have the delta function (32),   an element   reR      of order  d  must  exist,   i.e., m 

rd=l       . 

Since r •  r        =  1,   the inverse of  r  exists and equals r       .    But by an elementary theorem on 

congruences such an inverse exists if and only if (r, m) = 1.    This implies reR* .    Since the 

order of an element of a group divides the order of the group,   d|</>(m) or 

t 

n (Pi-D Pi 
i=l 

'i-1 
(40) 

But by an argument above (d, p.) = 1 for all   i.    This with (40) yields 

n ipi.ii 
i=l 

In order to have a delta function it is necessary that sum s      satisfy, 
j m " 

d-1 

S     =    YJ    <rm)    = 0 Mod 

k=0 

for (m = 1, 2, . . . , d — 1).     Since m = irp. x and the p- l are all relatively prime,   then 

d-1 , n. 
S     =    )"    (rm)K = 0 Mod p. * 

k=0 

(41) 

for (i = 1, 2 t) and (m = 1,2, d-1). 

Now mapping i/>(x) in (38) sends reR*    into the following vector 

/ "l n2 "t\ i^(r) = (r Mod p    , r Mod p     , . . . r Mod p     ) 

= (r4. r2.....r) 

Pi l 
where r. denotes the residue of r in R* n..    Consider now the order of r. in K± n:-    Let this 

d. Pi 
order be d. so that    r. 1 = 1.    Evidently d. must at least divide  d  so that d. •£ d. 

11 J    l l 

Now suppose d. < d.    Then 

d-1 d-1 d times 

I   kT"   l  (r f H TTTTTTTi = c Mod p 
n. 

I 

k=0 k=0 
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But,   a previous argument above,   (d, p.) = 1 for i = 1, 2, ... t.    Thus (41) for m = d. satisfies 

n. 
S,   = d # 0 Mod p. l 

d. L 
l 

This is a contradiction to (41).    Thus the "proiection"  r. of  r  in R    n.   has   order d   for r i p.   l 

i = 1, 2, ... t.    But again since the order of an element divides the order of the group, 

n.-l 
d|(Pi - 1) p.  1 

for all   i  (i =  1, 2, ...t).    Finally, since  d  and  p.   are   relatively prime, all   i,    d|(p.   -    1) for 

(i = 1, 2, ... t).    This proves the converse of Pollard's theorem. 
The mapping 4>(x) given by (38) represents an integer modulo m as a vector of residues of 

relatively prime moduli.    The arithmetic associated with this representation has come to be 
known as modular arithmetic.    Also the rings associated with the mapping i/(x) in (38) are called 
modular arithmetic rings.     Hence it is reasonable to call transforms of type (1),   which are 
mapped by i/i(x) into a modular arithmetic ring,   modular arithmetic transforms. 
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